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ABSTRACT

An offline approach is proposed for the estimation of model and data error covariance matrices whereby
covariance matrices of model data residuals are ‘‘matched’’ to their theoretical expectations using familiar least-
squares methods. This covariance matching approach is both a powerful diagnostic tool for addressing theoretical
questions and an efficient estimator for real data assimilation studies.

Provided that model and data errors are independent, that error propagation is approximately linear, and that
an observability condition is met, it is in theory possible to fully resolve covariance matrices for both model
and data errors. In practice, however, due to large uncertainties in sample estimates of covariance matrices, the
number of statistically significant parameters that can be estimated is two to three orders of magnitude smaller
than the total number of independent observations.

The covariance matching approach is applied in the North Pacific (58–608N, 1328–2528E) to TOPEX/Poseidon
sea level anomaly data, acoustic tomography data from the Acoustic Thermometry of Ocean Climate Project,
and a GCM. A reduced state linear model that describes large-scale internal (baroclinic) error dynamics is
constructed. Twin experiments suggest that altimetric data are ill suited to estimating the statistics of the vertical
GCM error structure, but that such estimates can in theory be obtained using acoustic data.

The particular GCM integration exhibits a warming trend relative to TOPEX/Poseidon data of order 1 cm
yr21 corresponding to a peak warming of up to 0.28C yr21 in the acoustic data at depths ranging from 50 to 200
m. At the annual cycle, GCM and TOPEX/Poseidon sea level anomaly are in phase, but GCM amplitude is 2
cm smaller, with the error confined above 200-m depth. After removal of trends and annual cycles, the low-
frequency/wavenumber (periods .2 months, wavelengths .168) TOPEX/Poseidon sea level anomaly is order
6 cm2. The GCM explains about 40% of that variance. By covariance matching, it is estimated that 60% of the
GCM–TOPEX/Poseidon residual variance is consistent with the reduced state linear model.

1. Introduction

This paper concerns the determination of error sta-
tistics for oceanic general circulation models (GCMs)
and data. Error estimates are needed to understand mod-
el and data deficiencies and are prerequisite to data as-
similation studies (Bennett 1992; Wunsch 1996). While
a lot of effort already goes into providing error estimates
for oceanic data (e.g., Stammer and Wunsch 1994), little
is known, quantitatively, about the skill of GCMs. And
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yet, misspecification of GCM errors can have disastrous
consequences on data assimilation results (Dee 1995).
The major difficulty has been a lack of global oceanic
datasets of sufficient quality and duration to characterize
the error statistics. With the advent of the TOPEX/Po-
seidon altimeter, which provides stringent tests for GCM
errors at the surface (Fu and Smith 1996; Stammer et
al. 1996), and of other large-scale ocean observation
systems (e.g., the TOGA–TAO array; Hayes et al. 1991),
and with the proliferation of oceanic data assimilation
studies (Malanotte-Rizzoli 1996), it becomes urgent to
establish a quantitive framework in which to examine
GCM errors.

The questions addressed here are the following. Given
a particular observation system, what components of a
GCM’s error structure can be determined? Is it possible
to discriminate between data and model errors? Can the
altimetric data resolve the internal GCM error structure?
How much data is required? Finally, what is the ac-
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curacy of the resulting errors estimates? We ask the
above questions in the context of a study wherein four
years of TOPEX/Poseidon data, the first full year of
Acoustic Thermometry of Ocean Climate (ATOC) data,
and the Marshall et al. (1997a,b) GCM are used to es-
timate the large-scale (.1000 km), time-varying cir-
culation and heat budget of the North Pacific (The
ATOC Consortium 1998).

The problem of quantifying model errors using data
is addressed with adaptive Kalman filters by the engi-
neering community (for recent surveys see Isaksson
1988; Moghaddamjoo and Kirlin 1993). Some of these
adaptive filter methods have been applied to meteoro-
logical (e.g., Dee et al. 1985) and, more recently, to
oceanographic (Blanchet et al. 1997) data assimilation
studies. No single method, however, is applicable to all
situations, each method being a compromise between
computational cost, convergence speed, and simplifying
assumptions.

Following the suggestion of Blanchet et al. (1997),
we started by testing the empirical algorithm of Myers
and Tapley (1976) and a maximum-likelihood estimator
inspired by Dee (1995). We concluded that neither meth-
od was well suited to our particular problem, the former
because of slow convergence and the latter because of
high computational cost (Chechelnitsky 1999). We
adapt instead the offline approach proposed by Fu et al.
(1993) (appendix A) and estimate system and measure-
ment error covariance matrices by matching sample co-
variance matrices of GCM data residuals to their the-
oretical expectations. Our algorithm extends the ap-
proach of Fu et al. (1993) in the following ways: 1) we
relax the assumption of independence between model
simulation errors and the true state, 2) we use Green’s
functions to obtain a solution, 3) we exploit time-lagged
correlations in the data, and 4) we provide uncertainty
bounds for the estimates.

The proposed covariance matching approach is sim-
ilar to methods described by Shellenbarger (1966) and
Belanger (1974) but we use GCM data residuals directly
rather than the innovation sequence (i.e., residuals be-
tween data and successive Kalman filter estimates). In-
novation sequence approaches have been preferred by
the engineering community because they are more read-
ily amenable to online applications and to the tracking
of slowly varying statistics in small-dimensioned sys-
tems. When first guess error statistics are accurate, the
innovations will be less correlated (in time) than GCM
data residuals and, therefore, the available information
will collapse into a small number of lag covariance ma-
trices.

For the large-dimensioned systems of interest to
oceanographic studies, however, it is preferable to work
with GCM data residuals directly for the following rea-
sons. First, sample covariances can be computed offline
thus avoiding the computational burden associated with
repeated integrations of the Kalman filter. Second, mod-
el and data error covariance matrices are linearly related

to those of GCM data residuals. By way of contrast, the
innovation sequence variants of the algorithm require
linearization about some first guess error statistics and,
therefore, convergence is not guaranteed (Moghaddam-
joo and Kirlin 1993). Finally, GCM data residuals con-
tain information about absolute error variances while
the innovation sequence can be used only to determine
the relative ratio of model and data error variances.
Although relative error ratios suffice for time stepping
the Kalman filter, absolute error variances are required
for obtaining a posteriori error statistics.

The remainder of this article is organized as follows.
A statistical description of the problem and of the co-
variance matching algorithm appear in section 2. In sec-
tion 3, the circulation and measurement models are in-
troduced, and covariance matching is tested in a series
of twin experiments. In section 4, fields diagnosed from
the GCM are compared to TOPEX/Poseidon and ATOC
data and the residuals are used to estimate trends, annual
cycles, and error covariance matrices. Conclusions are
set forward in section 5.

2. Statistical modeling

Let p(t) represent GCM simulation errors,

p(t) 5 xGCM(t) 2 xocean(t), (1)

that is, the difference at time t between xGCM(t), the
prognostic variables of a GCM, and xocean(t), the true
state of the ocean sampled in a manner consistent with
xGCM. We model the dynamical evolution of the errors
as

p(t 1 1) 5 A(t)p(t) 1 B(t)q(t), (2)

where A(t) is the state transition matrix and q(t) are
system errors, that is, errors in initial and boundary
conditions, indeterminate GCM parameters, and other
model errors; q(t) is projected onto the GCM grid by
matrix B(t). The difference between GCM predictions
and oceanographic observations, yocean(t), can be ex-
pressed as a noisy linear (or linearized) combination of
p(t),

y(t) 5 H(t)x (t) 2 y (t), (3)GCM ocean

5 H(t)p(t) 2 r(t), (4)

where H(t) is the measurement matrix and r(t) are data
errors. In addition to instrument noise, r(t) includes rep-
resentation errors (Fukumori 1999; Cohn 1997), that is,
real oceanic signal not represented by the GCM, for
example, tides and scales smaller than those resolved
by the model.

Vectors q(t) and r(t) are taken to be random variables
and are described by their means, ^q(t)& and ^r(t)&, and
by their covariance matrixes, Q(t) [ covq(t) and R(t)
[ covr(t), where the covariance operator is defined in
the usual way, covq [ ^(q 2 ^q&)(q 2 ^q&)9&, ^ · & is
the expectation operator, and prime indicates the trans-
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TABLE 1. Summary of notation.

Symbol Definition Equations

·̃, ·̄, ^·&, |·| Estimate, sample mean, expectation, norm 5, 15
9, cov, (A) Transpose, covariance, column operator 5, 8, 11
p, s 2, r Degrees of freedom, variance, correlation coefficient Appendix C
q, r, s, t, u, y Time and time lag indices 1, 12, C1
K, L Number of parameters: for Q, for R 6, 7
M, N Vector length: y, p Appendix B
S, T Maximum delay, number of time steps 13, 15
d Vector of elements from Y and Ds 13, 17
r, q, p Errors: data, system, GCM 1, 2, 4
xocean, xGCM, yocean, y Truth, GCM, data, residual 1, 3, 4
A, B, H Linear models 2, 4
Ds, Ys Lag-difference and lag covariance matrices 12, 14
I, 0 Identity matrix; zero matrix 5, 12
G , GY,k D ,ks Green’s function 10, 13
P, Q, R, Y covp, covq, covr, covy 6, 7, 8, 9
Pa, Ra, Re covã, cova, cove 18
a, ak, e Parameters for Q and R, sample error 6, 7, 13, 17, 24
G Green’s function kernel matrix 13, 17

pose. This is a complete statistical description of the
errors if the random vectors q(t) and r(t) have multi-
variate normal distribution (e.g., Mardia et al. 1979),
that is, if the errors can be modeled as resulting from
a set of stationary Gaussian processes. If the errors are
non-Gaussian, the mean and covariance remain useful,
though incomplete, descriptors. Our objective is to use
measurements y(t) to estimate ^q(t)&, ^r(t)&, Q(t), and
R(t) (see Table 1 for a summary of the notation).

a. The basic algorithm

We start by considering the case where A, B, H, Q,
and R are time-independent; A, B, and H are known; A
is stable, that is, all its eigenvalues are contained within
the unit circle; B is identity; and vectors q(t) and r(t)
have zero mean and are independent of p(t),

^q(t)& 5 0, ^r(t)& 5 0,

^p(t)q(t)9& 5 0, ^p(t)r(t)9& 5 0. (5)

[The assumption of independence between q(t) and p(t)
is less restrictive than that used by Fu et al. (1993), who
assumed the model simulation error to be independent
of the true state, ^p(t)xocean(t)9& 5 0.] For stable A, (2),
(4), and (5) imply that ^y(t)& 5 ^p(t)& 5 0; (2) and (5)
imply that ^q(t1)q(t2)9& 5 0 for t1 ± t2. Finally we
parameterize Q and R as

K

Q 5 a Q , (6)O k k
k51

L

R 5 a R . (7)O K1k k
k51

Equations (6) and (7) anticipate that only a small number
of parameters can be resolved with a reasonable degree
of statistical significance. The exact forms of Qk and Rk

are problem dependent. Ideally, they should approxi-

mate the leading spatial patterns, or eigenvectors, of the
errors. In practice they are chosen based on physical
intuition and using Occam’s razor, that is, a search for
the simplest, physically plausible, and statistically con-
sistent error model.

Multiplying (2) by its transpose and taking expec-
tations produces the steady state Lyapunov equation
(e.g., Anderson and Moore 1979, p. 62),

P [ covp 5 APA9 1 Q, (8)

which relates the covariance of the GCM error to that
of the system error. For stable A, the Lyapunov equation
is readily solved for P using any of a number of ana-
lytical or numerical schemes (Gajić and Qureshi 1995).
Similarly, multiplying (4) by its transpose and taking
expectations yields

Y [ covy 5 HPH9 1 R. (9)

From (8) and (9) it follows that each element of Y is
linearly related to the elements of Q and R, and hence
to parameters ak in (6), (7). An elegant way to solve
this system of equations is through the use of Green’s
functions, GY,k, here defined as the response of mea-
surement covariance matrix, Y, to unit perturbations of
Qk or Rk, that is,

G 5 HP H9, G 5 R , (10)Y,k k Y,K1k k

where Pk is related to Qk by the Lyapunov equation (8).
Rewriting Y and G as column vectors yields a set ofY,k

linear equations,

 a1 
Y(_) 5 [G (_) · · · G (_)] _ , (11) Y,1 Y,K1L  

aK1L 

which can be solved for parameters ak using any of
several discrete linear inverse methods (e.g., Menke
1989; Wunsch 1996). To reduce computational cost, the
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column operator (A) in (11) can also represent an ap-
propriate subsampling of matrices Y and G , for ex-Y,k

ample, their diagonal elements. For any given definition
of operator (A) and set of matrices A and H, linear inverse
theory provides powerful tools for understanding which,
and how well, combinations of parameters ak in (11)
can be determined.

This completes a basic description of the estimation
algorithm. We next consider a series of algorithmic re-
finements and the effects of relaxing some of the sim-
plifying assumptions. One issue is whether R and Q can
be estimated simultaneously (e.g., Groutage et al. 1987;
Maybeck 1979), that is, whether an arbitrary set of pa-
rameters ak in (11) can be resolved independently. In
section 2b and appendix B we demonstrate that, under
a very general set of conditions, R and Q can be resolved
by making use of time-lagged correlations in the data.
A more serious limitation is that Y is estimated as the
sample covariance of y(t): the consequences of sampling
uncertainty are discussed in section 2c and appendix C.
The algorithm is illustrated with a small numerical ex-
ample in section 2d. Systematic and time-correlated er-
rors are considered in sections 2e and 2f, respectively.
Section 2g deals with time-dependent models. Finally,
section 2h discusses statistical consistency tests.

b. Using lag-difference covariance matrices

The covariance matrix Y does not describe temporal
correlations in the data. It is therefore reasonable to
expect that estimates of Q and R might be improved by
making use of lag-difference covariance matrices. From
a recursive application of (2) and from the definitions
of Q, R, and P, the covariance matrix of the lag-s dif-
ference is

D [ cov[y(t 1 s) 2 y(t)]s

s s5 2HPH9 2 HA PH9 2 HPA 9H9 1 2R
s s5 H(A 2 I)P(A 2 I)9H9

s
s2k (s2k)1 HA QA 9H9 1 2R,O

k51 (12)

where it is assumed that ^r(t1)r(t2)9& 5 0 for t1 ± t2.
As before, Y and several lag-s-difference covariance ma-
trices can be combined in an equation of type d 5 Ga;
that is,

   Y(_) G (_) · · · G (_)Y,1 Y,K1L  a1     D (_) G (_) · · · G (_)1 D ,1 D ,K1L1 15 _ . (13)    _ _  
a    K1L D (_) G (_) · · · G (_)S D ,1 D ,K1L  S S 

Here, G represents the Green’s function associatedD,k

with data covariance matrix D and parameter ak. Since
Dr 2 Ds is independent of R for any r ± s, it is possible
to resolve a particular Qk independently of R (see ap-

pendix B), provided Qk is observable in the sense that
HA QkA 9H9 ± 0 for some s $ 1.s s

An equation of type (13) can also be written in terms
of the lag covariance,

Ys [ ^y(t 1 s)y(t)9& 5 HA PH9.s (14)

Whether it is preferable to use lag rather than lag-dif-
ference covariance matrices, that is, Ys rather than Ds,
is addressed in the next section.

c. Finite number of measurements

The discussion so far has assumed that covariance
matrices Ys and Ds are exact. In practice, a finite number
of measurements is available and we work with sample
estimates Ỹs and D̃s: the sample covariance of y(t) is

T1
Ỹ [ [y(t) 2 y][y(t) 2 y]9, (15)O

T t51

where T is the total number of time steps and
T1

y [ y(t) (16)O
T t51

is the sample mean.
The first algorithmic modification required concerns

the computation of Green’s functions. If T spans less
than about 20 e-folding periods for each observable nor-
mal mode of linear system p(t 1 1) 5 Ap(t), the steady-
state limit given by the solution to the Lyapunov equa-
tion (8) will be inaccurate. A Monte Carlo approach can
instead be used to estimate Pk by driving linear model
(2) with random system noise generated using covari-
ance Qk; Pk is estimated by averaging over a large num-
ber of independent simulations, each with finite time
span T.

A second modification is required to accomodate un-
certainty in the sample covariance matrices. This is
achieved by appending an error term, vector e, to (13):

d 5 Ga 1 e. (17)

To solve (17), it is appropriate to use variance-mini-
mizing methods because the probability distribution of
sample covariance matrices is approximately normal
(appendix C). For example, parameter vector a in (17)
can be determined by minimizing the weighted least-
squares cost function,

J(a) 5 e9 e 1 (a 2 a0)9 (a 2 a0), (18)21 21R Re a

where a0, Ra, and Re represent prior knowledge for ^a&,
cova, and cove, respectively.

The uncertainty variance of a sample covariance is
O[ (1 1 r2)/p], where and denote variances2 2 2 2s s s s1 2 1 2

for the two random variables being compared, r is the
correlation coefficient, and p is the number of degrees
of freedom, that is, the number of independent mea-
surements (appendix C). It follows that for a given sam-
ple size, the smaller the variances, the more accurately
sample covariances can be determined.
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For example, in the twin experiments of section 3c,
statistically significant error estimates are possible using
lag-diference covariance matrices, Ds, but not with lag
covariance matrices, Ys. In those experiments the errors
propagate slowly relative to the duration of a time step,
that is, the state transition matrix is approximately iden-
tity, so that, for small values of lag s, (12) simplifies to
Ds ø sHQH9 1 2R. The sample uncertainty of D̃s there-
fore scales with the diagonal elements of (sHQH9 1
2R). By comparison, the uncertainty of Ỹs scales with
the diagonal elements of (HPH9 1 R), which are much
larger. As a rule of thumb, it is preferable to work with
D̃s when A ø I and |R| K |HPH9|.

d. Numerical example

The covariance matching recipe is next illustrated us-
ing a numerical example. Consider the system of equa-
tions (2), (4) with

0.8 0.2
A 5 , B 5 I, H 5 [1 1]. (19)[ ]20.1 0.9

The system and measurement error covariance matrices
are parameterized

1 0 0 0 1 1
Q 5 a 1 a 1 a ,1 2 3[ ] [ ] [ ]0 0 0 1 1 1

R 5 a . (20)4

From the steady-state Lyapunov equation (8) we obtain
the covariance matrices

2.5 20.4 1.9 1.7
P 5 , P 5 ,1 2[ ] [ ]20.4 0.5 1.7 3.7

5.9 3.2
P 5 , (21)3 [ ]3.2 2.5

corresponding to unit perturbations of parameters a1,
a2, and a3, respectively, in (20). Computing the Green’s
functions associated with Y and Ds results in the fol-
lowing system of equations:

     Y 2.2 9.1 14.9 1 a1     D 1.3 1.1 4.4 2 a1 25 . (22)     
D 2.3 2.6 8.6 2 a2 3     
D 3.2 4.4 12.6 2 a3 4     

The kernel matrix in (22) has rank 3 (singular values
[24.6 3.7 0.9 0.0]9), which indicates that only three
independent combinations of parameters ak can be re-
solved. It turns out that the addition of D3, or of higher
lag covariance matrices, does not contribute new infor-
mation. Rules regarding the total number of resolvable
parameters are set forward in appendix B.

Simulated data were generated for a 5
[1 1 0 1]9, T 5 500. We seek to estimate a using

the simulated data and the recipe of section 2b. From
inverse theory, only projections onto singular vectors
of G corresponding to nonzero singular values can be
determined (e.g., Wunsch 1996, p. 147). The full so-
lution is

[0.08 0.25 0.47 1.00]9ã 5

1 l[20.88 20.34 0.34 0.00]9, (23)

where l is an arbitrary constant multiplying null space
contributions; l cannot be determined without addi-
tional information. To set l we assume that there is a
priori knowledge that the system error covariance matrix
is diagonal, that is, a3 5 0. This assumption requires
that l 5 21.4 and hence that 5 [1.3 0.7 0 1.0]9.ã

Next we seek to estimate the solution uncertainty, Pa

[ . Formally Pa is a function of a priori covariancecovã
matrices Re and Ra in (18). Here Ra is the a priori
covariance of parameter vector a and the only a priori
knowledge assumed is that a3 5 0. Matrix Re describes
the sample uncertainty of Ỹ and D̃s. An estimate of Re,
consistent with the available data, can be obtained using
the expressions derived in appendix C:

 1.8 0.1 0.2 0.5
 0.1 0.1 0.1 0.1

R ø . (24) e 0.2 0.1 0.2 0.3 
0.5 0.1 0.3 0.6 

The solution uncertainty matrix is Pa 5 (G9 G)21.21Re

Therefore 5 [1.3 6 0.4 0.7 6 0.2 0 1.0 6 0.2]9,ã
consistent with the parameter vector a 5 [1 1 0 1]9
used to generate the simulated data. (Unless otherwise
specified, uncertainty is reported using one standard de-
viation.)

From a set of numerical experiments, like that above,
we conclude that the covariance matching method gives
consistent and statistically significant estimates, provid-
ed the total number of available measurements is much
greater than the number of parameters ak, that is, MT
k K 1 L, where M is the length of the measurement
vector, T is the number of time steps, and K 1 L is the
total number of parameters in (6), (7). The requirement
for a large number of observations per parameter is a
direct consequence of the large uncertainty of sample
covariance matrices.

What happens if instead of assuming a3 5 0, which
is the condition used to generate the simulated data, it
is instead assumed that a1 5 0? This assumption implies
that l 5 0.09 in (23) and leads to a second solution

5 [0 0.2 6 0.3 0.5 6 0.2 1.0 6 0.2]9. From theã
data alone there is no way to decide whether this so-
lution is better or worse than the previous one. In fact,
there exist a large number of consistent solutions de-
pending on particular choices of l and of other a priori
assumptions. For this particular example, a second in-
dependent measurement at every time step would permit
Q to be determined uniquely. But for real oceanographic
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problems there is rarely, if ever, sufficient data to fully
determine Q, and one must therefore rely on physical
intuition to choose suitable models for the errors.

(MATLAB script files and functions that implement
this example, and which can be customized for different
applications, are available via anonymous FTP to gulf.
mit.edu, IP Address 18.83.0.149, from directory pub/
dimitri/GCMerror.)

e. Systematic errors

Systematic errors, or biases, refer to the quantities
^r(t)& and ^q(t)&. These errors are important because,
even if very small, they can accumulate over long nu-
merical integrations and degrade the predictive skill of
a model. A first scenario is that of a stable, time-in-
dependent system, as before, but with ^r& ± 0, ^q& ±
0. Notice that the estimators that have been developed
for R, Q, and P are not, to first order, affected by the
presence of measurement and model biases because the
sample mean is subtracted from the data in (15) and
because the biases cancel out when computing lagged
data differences.

Model bias correction in the context of atmospheric
data assimilation was recently discussed by Evensen et
al. (1998) and by Dee and da Silva (1998). They de-
scribed online algorithms suitable for sequential esti-
mation approaches. Offline algorithms, whereby biases
are removed prior to data assimilation, are also available
(e.g., Fukumori 1999) and are discussed below for com-
pleteness. From (2) and (4) it follows that

^y& 5 H(I 2 A)21^q& 1 ^r&, (25)

that is ^y& is linearly related to the biases, ^q& and ^r&.
The sample mean, y in (16), is an unbiased estimator
of ^y& with uncertainty (Anderson 1971, section 8.2),

T21 T 2 |r |
covy 5 ^y(t 1 r)y(t)9&, (26)O 21 2Tr512T

which, using (2), (4), and (8), reduces to

T21Y T 2 r r rcovy 5 1 (HA PH9 1 HPA 9H9), (27)O 21 2T Tr51

where Y is the data covariance matrix (9) and P is the
GCM error covariance matrix (8); estimates for both
matrices having been obtained earlier. Without addi-
tional information or assumptions, it is not possible to
discriminate between system bias ^q& and data bias ^r&.

A second scenario, that of a gradual change, or trend,
in the system error, is discussed in section 2g, which
deals with time-dependent models.

f. Time-correlated errors

So far we have assumed that measurement and system
errors are uncorrelated in time, that is ^r(t1)r(t2)9& 5 0,
^q(t1)q(t2)9& 5 0 for t1 ± t2. The former condition is

required to evaluate lag-difference covariance matrices
(12), but it is not required to evaluate the data covariance
matrix Y, which can therefore be used as before. The
latter condition is implicit in (5) and presents a more
difficult modeling challenge. Correlated system and data
errors need to be removed from the model-data residuals
in order to avoid biasing estimates of second-order sta-
tistics.

Under the Kalman filter formalism this situation is
usually addressed by appending additional parameters
to the state vector and jointly estimating time-correlated
and uncorrelated errors. These parameters can also be
estimated offline. Consider, for example, the specific
case of an annual cycle in the system and/or in the
measurement errors, a situation that is of direct practical
relevance to oceanographic applications. Taking the
Fourier transform of (2) and (4), it follows that each
frequency component of y(t) is linearly related to the
same frequency component in q(t) and r(t),

y 5 Hp 1 r , (28)a a a

p exp(iv /12) 5 Ap 1 q , (29)a a a

where the subscript a indicates the complex annual cycle
amplitude, that is, ya 5 a exp(if ), a is the amplitude,
f is the phase, v 5 2p/year, and we have assumed a
time step of 1 month in (29). It is straightforward to
remove correlated signals at the annual period from
model-data residuals (e.g., section 4). But without ad-
ditional information, it is not possible to partition the
annual cycle error between system and data errors.

g. Time-dependent models

We consider two types of time dependence. The first
type is ‘‘known’’ time dependencies in the linear mod-
els, A, B, and H, and also possibly in the measurement
error covariance matrix, R. These are readily accom-
modated by using a Monte Carlo approach to compute
the Green’s functions, G . An example of this ap-D,k

proach, with a time-varying H(t), is the treatment of
acoustic time series of differing lengths in section 4.

The second type of time dependence is fluctuations
of the ‘‘unknown’’ model parameters, ak(t) in (6), (7).
In principle, this situation can be addressed through
piecewise estimates of ak(t) for periods that are short
relative to the timescales of ak. A better approach is to
parameterize the time dependency and to estimate these
parameters using all the available data. An example is
the detection of a trend, ^]q/]t& ± 0, in the system error.
From (25), and assuming ^]r/]t& 5 0, the first difference
of q(t) is related to the first difference of y(t) by

^y(t 1 1) 2 y(t)& 5 H(I 2 A)21^q(t 1 1) 2 q(t)&. (30)

The expression ^y(t 1 1) 2 y(t)& can be approximated
using least-squares (or other suitable estimators) and in
turn used to estimate the quantity ^]q/]t& (e.g., section
4).
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FIG. 1. Acoustic sections from the Acoustic Thermometry of Ocean
Climate (ATOC) experiment used in the analysis are overlain on a
map of the study area.

FIG. 2. Temperature EOFs used to represent the vertical GCM error
structure. EOFs were computed from the difference between GCM
output and measured temperature profiles in the study area (Mene-
menlis et al. 1997).

h. Tests of consistency

The final step of any estimation study is to test the
resulting estimates for statistical consistency with all a
priori assumptions. One possible test is the comparison
of estimation residual, e in (17), (18), to its expected a
posteriori covariance,

5 Re[Re(GRaG9 1 Re)21]9.covẽ (31)

In addition, when Q and R are used in conjunction with
a Kalman filter, whiteness tests can be applied to the
innovation vectors (Daley 1992).

The description of the algorithm is now complete. In
the remainder of this article we illustrate the application
of this algorithm, first with twin experiments (section
3) and then with real data (section 4), by estimating the
large-scale (.1000 km) baroclinic errors in a particular
implementation and linearization of a GCM.

3. Twin experiments

a. Circulation and measurement models

The circulation and measurement models, described
below, are common to both the twin and the real ex-
periments. The GCM is that of Marshall et al. (1997a,b)
integrated in a global configuration wih realistic topog-
raphy and driven by surface wind and buoyancy fields
obtained from twice-daily National Centers for Envi-
ronmental Prediction (NCEP) meteorological analyses.
Horizontal grid spacing is 18 and there are 20 vertical
levels.

A linear, time-independent model for GCM errors in
the North Pacific is constructed by systematically per-
turbing the GCM with large-scale temperature anoma-
lies (Menemenlis and Wunsch 1997). The linear model
is defined in a region bounded by 58–608N and 1328–
2528E (Fig. 1). It operates on a reduced state vector that
has 88 sampling in the horizontal, four vertical temper-
ature empirical orthogonal functions (EOFs, see Fig. 2),
and a time step of 1 month. In this representation, sea
surface pressure errors in the GCM caused by barotropic
or salinity effects, or by scales not resolved by the re-
duced state vector, become part of the measurement er-
ror r(t), and are described by covariance matrix R. The
state vector dimension is reduced from 5 3 106 in the

GCM to 512 in the linear model. Away from coastal
regions, this reduced-state linear model describes the
large-scale temperature perturbation response of the
GCM with considerable skill for periods up to two years.
Similar types of state reduction and linearization are
commonly used for propagating the error covariance
matrix in data assimilation studies (Fukumori and Ma-
lanotte-Rizzoli 1995; Cane et al. 1996).

The acoustic tomography data from ATOC are first
inverted to produce equivalent range-averaged ocean-
ographic temperature perturbations along each section
(The ATOC Consortium 1998). Data–GCM discrepancy
is then projected onto the four vertical EOFs and the
monthly sampling of the reduced state vector described
above. Therefore, the measurement matrix for acoustic
tomography data consists of a range-average for each
vertical EOF and for each section. Acoustic data from
five sections (Fig. 1) are used for a total of 20 data
points (projections onto the four vertical EOFs for each
section), once per month.

The measurement matrix H appropriate for altimetry
consists of a weighted sum of the four vertical EOFs at
each horizontal location of the reduced state grid. The
weights are chosen to represent steric sea level anom-
alies corresponding to unit perturbations of each vertical
EOF at each location.

b. Generation of simulated data

Before applying covariance matching to real data, we
test the algorithm in a series of twin experiments using
simulated data with known statistical properties. We pa-
rameterize Q in (6) as a diagonal matrix with four pa-
rameters, a1, . . . , a4, each representing system error
variance associated with each of the four vertical EOFs,
that is, we assume that the system error is horizontally
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FIG. 3. Mean diagonal values of sample covariance matrices Ỹ, D̃1,
and D̃2, as a function of years of simulated data. Error bars represent
the associated standard uncertainty. Dotted lines are the steady-state
values. (The steady-state value associated with Ỹ, 30, is not shown.
Because the leading eigenvalue of the reduced-state dynamical model
corresponds to an e-folding timescale of 19 years, a few hundred
years of data are needed for sample covariance Ỹ to reach a steady
value). Lag-1 estimates have the smallest relative uncertainty, sug-
gesting that matching the lag-1 data covariance matrix will provide
the most accurate estimates of system and measurement error.

FIG. 4. Estimates of system error variance based on the lag-1 dif-
ference sample covariance, D̃1, for simulated acoustic tomography
data. Dotted lines indicate the values of a1, . . . , a4 used to generate
the test data. The error bars represent the standard error of the es-
timates. The figure demonstrates the increasing accuracy of the al-
gorithm with increasing number of measurements.

TABLE 2. Estimates of system error covariance matrix Q based on
14 months of simulated acoustic tomography data. The measurements
are assumed perfect, that is, R 5 0. The best estimates are obtained
by matching the lag-1 difference covariance matrix, D̃1, with an average
standard error of 18% as compared to 38% for Ỹ.

Estimate
description

Parameters of covariance matrix Q

a1 a2 a3 a4

Truth
˜From Y
˜From D1

˜From diagD1
˜From D2

16
10.8 6 5.7
12.6 6 2.7
11.8 6 3.4
12.5 6 3.5

8
9.2 6 3.2
8.0 6 1.4
8.8 6 1.8
5.2 6 1.8

4
5.5 6 1.6
5.3 6 0.8
5.2 6 0.9
4.2 6 0.9

2
2.1 6 0.7
1.9 6 0.4
1.7 6 0.5
1.6 6 0.5

homogeneous and white. The measurement error co-
variance, R in (7), is also modeled as a diagonal matrix
with two parameters, a5 and a6, corresponding to the
measurement error variance associated with acoustic to-
mography and altimeter data, respectively. The test data
are generated using the reduced state linear model and
the acoustic and altimetric measurement models, and by
driving Eqs. (2), (4) with white system and measurement
noise characterized by parameters a1, . . . , a6, as de-
fined above.

c. Tests with pseudoacoustic data

The first set of twin experiments is carried out with
noise-free, R 5 0, simulated acoustic tomography data.
It is both impractical, because of computational cost,
and unnecessary, because of information overlap, to
match all available lag-difference data covariance ma-
trices as in (13). An appropriate subset of data covari-
ance matrices must be selected by trial and error and
by reference to the guidelines of section 2c, that is, a
preference for sample covariance matrices with small
matrix norms and hence smaller relative uncertainties.
The sample uncertainties of Ỹ, D̃1, and D̃2 are displayed
in Fig. 3 as a function of number of years of simulated
data. Note that D̃1 and D̃2 have smaller relative uncer-
tainties than Ỹ, suggesting that matching D̃1 or D̃2 will
produce better estimates of Q and R than matching Ỹ.

Figure 4 displays estimates of parameters a1, . . . ,
a4, based on matching D̃1, as a function of number of
years of simulated data. Error bars are obtained as in

section 2d. Contrary to the empirical algorithm of Myers
and Tapley (1976), which failed to converge for this
twin experiment (see Chechelnitsky 1999), the present
algorithm provides useful estimates of system error even
with a single year of data.

The results of a series of tests based on 14 months
of simulated data are summarized in Table 2 (at the time
of this study 14 months of ATOC data were available).
Each particular estimate is not expected to match the
true variance of Q exactly, but over a large number of
realizations the estimates are unbiased and their standard
deviation matches the standard uncertainty reported on
Table 2. For the dynamical and measurement models
used here, the lag-1 difference sample covariance ma-
trix, D̃1, provides the most accurate estimates, with mean
standard uncertainty of 18% as compared to 38% for Ỹ.
Matching only the diagonal elements of D̃1 leads to a
standard uncertainty of 23% similar to that obtained by
using the full lag-2 difference covariance matrix, D̃2.

Next we report on results from a series of experiments
with noisy measurements, R 5 I (Table 3). Measurement
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TABLE 3. Estimates of system and measurement error variance based on 14 months of simulated acoustic tomography data with R 5 I.
The addition of measurement error increases the uncertainty of the estimates as compared to those of Table 2. Nevertheless, usable estimates
of Q, with a standard error of 38%, are possible by simultaneously matching the lag-1 and lag-2 difference covariance matrices.

Estimate
description

Parameters of covariance matrix Q and R

a1 a2 a3 a4 a5

Truth
˜From Y
˜From D1
˜From D2
˜ ˜From D and D1 2

16
10.4 6 6.2
10.9 6 4.5

8.8 6 4.7
8.9 6 3.8

8
10.5 6 3.6
12.7 6 3.1
11.3 6 2.9

9.5 6 2.4

4
5.8 6 2.1
0.4 6 2.4
4.3 6 2.1
6.0 6 1.7

2
4.0 6 1.3

20.2 6 1.6
2.9 6 1.4
2.0 6 1.1

1
0.6 6 0.3
1.3 6 0.2
1.0 6 0.2
1.0 6 0.1

FIG. 5. Estimates of system error variance based on the diagonal
elements of D̃1 for simulated altimeter data. Dotted lines indicate
variances used to generate the data. Error bars represent the standard
uncertainty of the estimates and they can be compared to those of
Fig. 4, which was created using simulated acoustic data. The large
error bars associated with the altimetric estimates suggest that altim-
eter data are ill-suited to the estimation of the vertical GCM error
structure.

error degrades the estimates of Q considerably: the stan-
dard error for estimates obtained using D̃1 is 52%. The
uncertainty can be reduced by using several lag-s dif-
ference covariance matrixes simultaneously: using D̃1

and D̃2 simultaneously reduces the estimation uncer-
tainty to 38%.

In summary, the estimation uncertainty decreases
with increasing years of available data and with in-
creasing ratio |Q|/|R|. The simulation results indicate that
14 months of acoustic data are sufficient to produce
usable estimates of Q and R, provided the circulation
and measurement models of 3a are valid and provided
|Q| k |R|.

d. Tests with pseudoaltimeter data

A third set of twin experiments is conducted using
simulated altimeter data. In theory, it is possible to sep-
arate baroclinic modes in the altimeter data by making
use of their different temporal evolutions at the sea sur-
face (e.g., Holland and Malanotte-Rizzoli 1989). The

results presented below, however, suggest that even with
perfect measurements, R 5 0, and with perfect knowl-
edge of the dynamical and measurement models, A and
H, altimeter data on their own are ill-suited to the es-
timation of the vertical GCM error statistics. Figure 5
is an attempt to estimate the system error using up to
10 years of perfect altimeter data. At the conclusion of
year 10, the standard uncertainty of the estimates re-
mains too large for the estimates to be of any practical
interest.

At the writing of this manuscript, 48 months of high
quality TOPEX/Poseidon altimeter data were available.
We therefore performed a further series of tests using
48 months of simulated altimeter data (see Table 4).
Because of the large dimensions of the sample covari-
ance matrices, only their diagonal elements have been
matched. The first six rows of Table 4 correspond to
estimates from matching Y, and D1 through D5. The last
row summarizes results from matching all six data co-
variance matrices simultaneously. The standard errors
for this last case range from 35% to 235%. The situation
is worse when measurement errors are included. We
conclude that covariance matrices for the vertical GCM
error structure cannot, in the present setup, be quantified
from TOPEX/Poseidon data alone.

4. Experimental results

a. TOPEX/Poseidon data

The covariance matching approach is next applied to
TOPEX/Poseidon altimeter data and to a particular in-
tegration of the Marshall et al. (1997a,b) GCM. Figure
6 compares measured sea level anomaly variance to that
predicted by the GCM. Both the altimetric data and the
GCM have been processed in a way consistent with the
reduced state described in section 3a, that is, periods
shorter than 2 months and length scales smaller than
168 have been low-pass filtered. In addition, annual cy-
cles and trends have been removed at every location;
these will be studied separately. Altimetric data and
GCM output exhibit the same general patterns of en-
hanced variability near the Kuroshio, the Hawaiian
Ridge, and in a band north of the equator. The GCM
variability, however, is on average 30% less than that
measured by the altimeter, and in some regions, notably
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TABLE 4. Estimates of system error covariance matrix Q based on 48 months of perfect, R 5 0, simulated altimeter data. The last row of
numbers are estimates obtained using the diagonal elements from all six data covariance matrices, Ỹ, D̃1, . . ., D̃5, simultaneously.

Estimate description

Parameters of covariance matrix Q and R

a1 a2 a3 a4

Truth
˜From diag(Y)
˜From diag(D )1
˜From diag(D )2
˜From diag(D )3
˜From diag(D )4
˜From diag(D )5

From all the above

16
30 6 14

21 6 16
30 6 16
35 6 14
36 6 13
38 6 13

8 6 6

8
15 6 8

2 6 7
7 6 7

18 6 8
22 6 8
27 6 9
10 6 3

4
21 6 20
22 6 30

241 6 28
245 6 28
236 6 29
235 6 30

15 6 9

2
215 6 9

32 6 14
10 6 12

210 6 11
219 6 11
226 6 10

3 6 4

FIG. 6. North Pacific sea level anomaly variance for (a) GCM
output, (b) TOPEX-Poseidon data, and (c) GCM-TOPEX/Poseidon
residual, during the period 1 October 1992–31 May 1997. Annual
cycles, trends, periods shorter than 2 months, and length scales small-
er than 168 have been removed. Contour intervals are 3 cm2.

in the eastern tropical Pacific, the altimetric and GCM
time series are uncorrelated. The variance of the GCM–
TOPEX/Poseidon residual (Fig. 6c) is 60% that of TO-
PEX/Poseidon, indicating that the GCM explains 40%
of the observed low-frequency/wavenumber variability.
Our objective is to determine which fraction of the
GCM–TOPEX/Poseidon residual can be attributed to
system error, HPH9 in (9), and which fraction results
from measurement and representation errors, R in (9).

The twin experiments conducted earlier indicate that
it is not possible to determine covariance matrices for
the vertical GCM error structure from four years of
altimetric data. We therefore consider a number of sta-
tistical models for covariance matrices Q and R that
assume equipartition of the variance between the four
vertical EOFs. The first model is an attempt to estimate
the full spatial structure of the error variance under the
assumption that Q and R have zero off-diagonal ele-
ments. This model results in estimates that have no sta-
tistical significance; on average the standard uncertainty
of the estimates is 15 times larger than the estimates
themselves for the diagonal elements of Q and two times
larger for the diagonal elements of R.

To obtain statistically significant error estimates, it is
necessary to reduce the number of parameters to be
estimated. Therefore the second model considered is one
of homogeneous and spatially uncorrelated system and
measurement error, Q 5 a1I and R 5 a2I, repectively.
Matching this model to covariance matrices Ỹ, D̃1, D̃2,
and D̃3 yields 5 0.25 6 0.02, 5 1.00 6 0.03.ã ã1 2

Standard uncertainties are computed using a set of 100
Monte Carlo experiments whereby covariance matching
is applied to 100 sets of simulated data generated using
normally distributed q(t) and r(t) with variance 0.25 and
1.00, respectively. Assuming the statistical model cho-
sen to be the correct one, the standard deviation of the
Monte Carlo estimates represents a lower bound for the
standard uncertainty of the real estimates. These esti-
mates imply that on average 70% of the GCM–TOPEX/
Poseidon residual variance can be explained by system
error; that is, the ratio of the diagonal elements of HPH9
in (9) to those of Y is approximately 70% (see Fig. 7a).

The homogeneous model, however, does not account
for some of the regions of enhanced variability in Fig.
6c. A third plausible model is Q 5 a1Q1 and R 5 a2R1,
where Q1 and R1 are diagonal matrices with a spatially
varying structure proportional to that of the GCM–TO-
PEX/Poseidon residual variance. Matching this model
to the data yields 5 0.047 6 0.006, 5 0.28 6ã ã1 2

0.02, which implies that 60% of the GCM–TOPEX/
Poseidon residual variance is explained by system error
(Fig. 7b). To within the sample and estimation uncer-
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FIG. 7. Prior estimate for percent variance of GCM-TOPEX/Po-
seidon residual, which is explained by system error, that is, ratio of
diagonal elements of HPH9 in (9) to those of Y. The estimates are
obtained using the covariance matching method for (a) a homoge-
neous model for the errors, (b) a spatially varying model, and (c) the
model proposed by Fu et al. (1993), which assumes that the GCM
simulation errors are independent from the ocean state. Contour in-
tervals are 20%. Spurious negative regions in (c) (dashed contours)
result from the large uncertainty of the sample covariance matrices
used in the analysis.

FIG. 8. GCM–ATOC residual, along the five sections shown on
Fig. 1, converted to an equivalent sea level anomaly for comparison
with the TOPEX/Poseidon data. Annual cycles and trends have been
removed.

tainties, the prior variance predicted by this second mod-
el is consistent with the data.

A fourth model, that proposed by Fu et al. (1993),
results from assuming that the ocean state is independent
from the GCM simulation error, ^xoceanp9& 5 0 (see ap-
pendix A). When this assumption holds,

1
R 5 (Y 1 covy 2 H covx H9), (32)ocean GCM2

1
HPH9 5 (Y 2 covy 1 H covx H9). (33)ocean GCM2

On average, this third model predicts that 15% of the
GCM–TOPEX/Poseidon residual variance is caused by
system error (Fig. 7c). Although this relatively low val-
ue, compared to the earlier estimate of 60%, could point
to a number of problems with the statistical model, the
presumption is that to first-order condition ^xoceanp9& 5
0 is violated and hence that the 15% estimate is wrong.

b. ATOC data

We now turn our attention to the acoustic data. Figure
8 compares the GCM–ATOC residual, converted to an
equivalent sea level anomaly, to the range-averaged
GCM–TOPEX/Poseidon residual along each acoustic
path, after removing trends and annual cycles. The
acoustic data is used to estimate the vertical structure
of the errors and to test noise model #3 from above,
that is, Q 5 0.047Q1. We model Q as a diagonal matrix
with four parameters, a1, . . . , a4, each representing
system error variance associated with each of the four
vertical EOFs, and with a spatial structure proportional
to that of the GCM–TOPEX/Poseidon residual variance
(Fig. 6c). Measurement and representation error for the
acoustic data are modeled as R 5 a5I.

The cost function (18) is minimized assuming a priori
estimates of 0.047 6 0.047 for a1, . . . , a4, that is, the
estimate obtained using TOPEX/Poseidon data but al-
lowing for a larger uncertainty in order to test the ver-
tical equipartition hypothesis. The a priori estimate for
a5 is taken to be 0.28 6 0.28, that is, the variance of
the acoustic data with a corresponding uncertainty. A
conservative estimate for the prior sample covariance
uncertainty is Re 5 0.28I (appendix C). The resulting
estimates for system noise variance are a1 5 0.15 6
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FIG. 9. Vertical structure of the errors along the ATOC sections:
(a) standard error (in 8C) excluding trend and annual cycle, (b) trend
(in 8C year21), (c) annual cycle amplitude (in 8C), and (d) annual
cycle phase in months. The pentagrams, squares, and diamonds in
(a) correspond to estimated GCM, system, and measurement standard
errors, respectively. The dotted line is the mean standard uncertainty
of the acoustic inversions: it can be compared to that estimated using
covariance matching (diamonds) and it provides an approximate mea-
sure of statistical significance. Trends and annual cycles are displayed
for acoustic sections k, l, n, and o of Fig. 1. Positive trends correspond
to warming of the GCM relative to the acoustic data. Annual cycle
phase indicates the month of maximum positive anomaly for the GCM
relative to the data.

FIG. 10. Trend in the GCM-TOPEX/Poseidon residual. Contour
intervals are in cm year21 of sea level anomaly. Positive contours
indicate a gradual warming of the GCM relative to TOPEX/Poseidon.

0.04, a2 5 0.00 6 0.04, a3 5 0.11 6 0.04, and a4 5
0.00 6 0.04. These estimates differ from the altimetric
estimate of 0.047 6 0.006, indicating that the vertical
equipartition hypothesis is not valid.

A solution that is simultaneously consistent with both
TOPEX/Poseidon and ATOC data can also be obtained:
a1 5 0.04 6 0.03, a2 5 0.01 6 0.02, a3 5 0.06 6
0.03, and a4 5 0.12 6 0.02. This solution differs from
that using ATOC data alone in that it predicts less error
variance associated with vertical EOF 1 and more with
vertical EOF 4, that is, larger model errors above the
seasonal thermocline (see Fig. 2). The differences are
likely caused by different spatial and temporal extents
for the ATOC and TOPEX/Poseidon data and by in-
accuracies in the assumed statistical models. All three
covariance matching solutions, however, whether from
TOPEX/Poseidon data alone, from the ATOC data, or
from their combination predict that about 60% of the
GCM–TOPEX/Poseidon residual variance is explained
by system error.

Figure 9a displays the mean vertical structure of re-
sidual errors along the ATOC acoustic sections. The
dotted line indicates the mean standard uncertainty of
the acoustic inversions (The ATOC Consortium 1998)
and can be compared to the covariance matching esti-
mate of a5 5 0.31 6 0.03 (diamonds). Also displayed
are the estimated GCM and system standard errors, p(t)

and q(t), respectively. The acoustic data has limited
depth resolution, being better suited to the measurement
of top-to-bottom averages. Nevertheless, the data in-
dicates significant errors in the GCM variability from
about 100-m to 1000-m depth, with a maximum of 0.28C
at 300 m.

c. Trend and annual cycle

Trends and annual cycles of the GCM-data residuals,
which were excluded from the previous analysis, are
discussed next. In the tropical Pacific, the GCM exhibits
a warming trend relative to TOPEX/Poseidon data of
up to 3 cm year21 (Fig. 10). The acoustic data indicate
that most of the warming occurs between the seasonal
and main thermoclines, 50–1000-m depth, with a peak
warming of 0.18 to 0.28C year21, depending on location
(Fig. 9b).

For most of the subtropical gyre, both the GCM and
TOPEX/Poseidon exhibit maximum sea level anomaly
in September (month 9), but the TOPEX/Poseidon am-
plitude is about 2 cm larger than that of the GCM (Fig.
11). As a result, the peak GCM–TOPEX/Poseidon re-
sidual occurs in March (month 3), six months out of
phase with the GCM or TOPEX/Poseidon annual cycle.
Excluding the surface layer, where resolution is poor,
the acoustic data suggest that the annual cycle error is
confined to a depth range shallower than 200 m, the
phase-locked range in Fig. 9d, with a peak of 0.38C at
120-m depth (Fig. 9c).

5. Summary and concluding remarks

The principal contribution of this study is the couch-
ing of the GCM error estimation problem in terms of
familiar least-squares theory. The so-called ‘‘covariance
matching’’ approach makes it possible to take advantage
of a large number of tools from discrete linear inverse
theory in order to study the statistical properties of the
errors. The present study demonstrates that covariance
matching is both a powerful diagnostic for addressing
theoretical questions and an efficient approach for prac-
tical applications.

Assuming system and data errors to be uncorrelated
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FIG. 11. Annual cycle peak amplitude for (a) GCM output, (b) TOPEX/Poseidon data, and (c) GCM–TOPEX/Poseidon residual. Contour
intervals are 2 cm. The corresponding phase is displayed in (d), (e), and (f ), respectively, with 2-month contour intervals.

from each other and from the oceanic state, theoretical
questions can be addressed in the context of least-
squares equations (17)–(18). For a particular GCM and
set of measurements, the Green’s function matrix, G in
(17), establishes which GCM and data error components
are resolvable. Component Qk of system error covari-
ance matrix Q is resolvable provided HA QkA 9H9 ± 0s s

for some s $ 1 (section 2b). At least N independent
measurements per time step and two covariance matrices
(from the set Y, D1, D2, . . . ) are required to fully resolve
an N 3 N matrix Q (appendix B). When matrix Q is
fully observable, then from (8) and (9) the data error
covariance matrix R is also fully observable.

A major obstacle to obtaining statistically significant
results is the large uncertainty of sample covariance
matrices, O(2s 4/p) where s 2 is the variance and p is
the degrees of freedom (appendix C). The sample un-
certainty is represented by Re in (18) and standard least-
squares tools can be used to evaluate the statistical sig-
nificance of the error estimates (sections 2c and 2d). In
general, the number of error covariance parameters, ak

in (6)–(7), which can be determined with a reasonable
degree of statistical significance is two to three orders
of magnitude smaller than the total number of indepen-
dent data.

We illustrate the approach by applying it to a partic-
ular integration of the Marshall et al. (1997a,b) GCM,
56 months of TOPEX/Poseidon sea level anomaly data,
and 14 months of acoustic tomography data from the
ATOC project. The GCM is forced with observed me-
teorological conditions at the surface and integrated in
a global configuration with 18 horizontal grid spacing
and 20 vertical levels. A reduced state linear model that
describes internal (baroclinic) error dynamics is con-
structed for the study area (58–608N, 1328–2528E).

Twin experiments, using the reduced state model,
suggest that altimetric data are ill-suited to the esti-
mation of covariance matrices for internal GCM errors,
but that such estimates can in theory be obtained using
the acoustic data (Figs. 4 and 5). These conclusions must
however be qualified in the following way. First, the
vertical modes used here are EOFs, not dynamical
modes, and second, the tests were conducted using lin-
earized GCM dynamics. We do not exclude the pos-
siblity that dynamical modes or fully nonlinear dynam-
ics could enhance the resolution of internal GCM errors
from altimetric data.

The GCM exhibits a warming trend relative to TO-
PEX/Poseidon data of order 1 cm year21 (Fig. 10) cor-
responding to a peak warming of up to 0.28C year21 in
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the acoustic data at depths ranging from 50 to 200 m
(Fig. 9b). This trend measures GCM drift. At the annual
cycle, GCM and TOPEX/Poseidon sea level anomaly
are in phase, but GCM amplitude is 2 cm smaller (Fig.
11). The acoustic data suggest that the annual cycle error
is confined to the top 200 m of ocean (Figs. 9c and 9d).
These differences result from errors in the surface
boundary conditions and in the dynamics of the GCM.

After removal of trends and annual cycles, the low-
frequency/wavenumber (periods .2 months, wave-
lengths .168) TOPEX/Poseidon sea level anomaly is
order 6 cm2. The GCM explains about 40% of that
variance (Fig. 6). Assuming the error model used to be
correct, it is estimated by covariance matching that
about 60% of the GCM–TOPEX/Poseidon residual var-
iance is consistent with the reduced state dynamical
model (Fig. 7b). This conclusion appears to be relatively
robust: it holds for a number of different vertical and
horizontal error models, and it is supported by both the
altimetric and the acoustic data. The acoustic data mea-
sure significant GCM temperature errors in the 100–
1000-m depth range with a maximum of 0.38C rms at
300 m (Fig. 9a). The remaining GCM–TOPEX/Posei-
don residual variance is attributed to measurement
noise, to barotropic and salinity GCM errors, and to
vertical modes of temperature variability that are not
represented by the reduced state model.

This and previous studies demonstrate that it is pos-
sible to obtain simple statistical models for GCM errors
that are consistent with the available data. For practical
applications, however, the GCM error covariance esti-
mation problem is in general highly underdetermined,
much more so than the state estimation problem. In other
words there exist a very large number of statistical mod-
els that can be made consistent with the available data.
Therefore, methods for obtaining quantitative error es-
timates, powerful though they may be, cannot replace
physical insight. But used in the right context, as a tool
for guiding the choice of a small number of model pa-
rameters, covariance matching can be a useful addition
to the repertory of oceanographers seeking to quantify
GCM errors or to carry out data assimilation studies.
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APPENDIX A

The Fu et al. (1993) Approach

The covariance matching approach of Fu et al. (1993)
is derived from (1), (3), and (4):

x (t) 5 x (t) 1 p(t), (A1)GCM ocean

y (t) 5 Hx (t) 1 r(t), (A2)ocean ocean

y(t) 5 Hp(t) 2 r(t), (A3)

where p(t) and r(t) are GCM and data errors, respec-
tively, and y(t) is the GCM data residual. Multiplying
each expression by its transpose and taking expectations
yields

covx 5 covx 1 P 1 2^x p9&, (A4)GCM ocean ocean

covy 5 H covx H9 1 R, (A5)ocean ocean

Y 5 HPH9 1 R, (A6)

where it is assumed that r(t) is uncorrelated from xocean(t)
and from p(t). Fu et al. (1993) further assume that
^xoceanp9& 5 0 and solve for R and HPH9 to obtain equa-
tions (32) and (33). Because the approach described in
this manuscript does not require ^xoceanp9& 5 0, it is
possible to evaluate the validity of this assumption:

H^x p9&H9ocean

1 ˜ ˜ø (H covx H9 2 covy 1 R 2 HPH9). (A7)GCM ocean2

APPENDIX B

Maximum Number of Resolvable Parameters

The following restrictions apply to the estimation of
error covariance matrices Q and R. First, the maximum
number of parameters ak in (6)–(7) that can be resolved
is M(N 1 1), where M # N is the number of independent
observations at a given time step and N is the state
dimension [the length of vector p(t)]. Second, the max-
imum number of parameters ak describing Q that can
be resolved is M(N 1 1) 2 M(M 1 1)/2. This restriction
applies whether R is specified a priori or not. Finally,
the number of independent parameters ak, which can
be resolved using S data covariance matrices (from the
set Y, D1, D2, . . . ) is at most SM(M 1 1)/2. Proofs are
established for the covariance matching approach by
computing the rank of the Green’s function matrix in
(13) (Chechelnitsky 1999).

Consider an N 3 N system error covariance matrix
Q and an M 3 M measurement error covariance matrix
R. Here Q and R are symmetric matrices and are there-
fore completely described by N(N 1 1)/2 and by M(M
1 1)/2 parameters, respectively. To fully resolve Q and
R, the above rules require that N independent obser-
vations be available (i.e., M 5 N) and that at least two
data covariance matrices (e.g., Y and D1) be used.

APPENDIX C

Uncertainty of Sample Covariance

The covariance of a sample covariance (15) is
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˜ ˜(T 2 q)(T 2 r) cov[Y (q), Y (r)](i, j) (k,l)

T2q T2r

5 [Y (s 2 u)Y (s 1 q 2 u 2 r) 1 Y (s 2 u 2 r)Y (s 1 q 2 u)]O O (i,k) ( j,l) (i,l) ( j,k)
s51 u51

T2q T2r1
2 [Y (s 2 u)Y (s 1 q 2 y 2 r) 1 Y (s 2 y 2 r)Y (s 1 q 2 u)]O O (i,k) ( j,l) (i,l) ( j,k)T 2 r s51 u,y51

T2q T2r1
2 [Y (s 2 u)Y (t 1 q 2 u 2 r) 1 Y (s 2 u 2 r)Y (t 1 q 2 u)]O O (i,k) ( j,l) (i,l) ( j,k)T 2 q s,t51 u51

T2q T2r1
1 [Y (s 2 u)Y (t 1 q 2 y 2 r) 1 Y (s 2 y 2 r)Y (t 1 q 2 u)]. (C1)O O (i,k) ( j,l) (i,l) ( j,k)(T 2 q)(T 2 r) s,t51 u,y51

Here Y(i,j)(q) denotes the (i, j)th element of the lag-q
covariance matrix ^[y(t 1 q) 2 ^y&][y(t) 2 ^y&]9&; Ỹ(i,j)(q)
is the corresponding sample covariance. This formula
is a generalization of the univariate expression derived
by Anderson [1971, section 8.2, Eq. (64)]. The formula
is exact for Gaussian time series. In practice, however,
lag covariances in (C1) are replaced by sample esti-
mates, leading to approximate solutions. A useful ap-
proximation is

˜ ˜cov[Y (0), Y (0)](i, j) (k,l)

1 ˜ ˜ ˜ ˜ø [Y (0)Y (0) 1 Y (0)Y (0)], (C2)(i,k) ( j,l) (i,l) ( j,k)p

where p # T is the number of degrees of freedom
(roughly, the number of time steps T divided by the e-
folding correlation period). From (C2), the variance of
a sample covariance is O[ (1 1 r2)/p], where2 2 2s s s1 2 1

and denote the variances of two random variables2s 2

and r is the correlation coefficient. The probability dis-
tribution of a sample covariance is approximately nor-
mal for p . 30; it is chi-square for r 5 61 (e.g., Mardia
et al. 1979). Uncertainty for the lag-s difference co-
variance matrix (12) can be computed by observing that

Ds 5 2[Y(0) 2 Y(s)]. (C3)

(MATLAB-callable software for estimating uncertainty
of sample covariance is available via anonymous FTP
to gulf.mit.edu, IP Address 18.83.0.149, from directory
pub/dimitri/GCMerror.)
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